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ON THE CORRECTNESS OF THE BASIC PROBLEM OF DYNAMICS IN SYSTEMS WITH FRICTION* 

A.P. IVANOV 

The paradoxical situation whereby the motion of a mechanical system with 
friction is not unique is studied on the basis of Chetayev's stability 
postulate, according to which the moiton must have a "particular kind of 
stability" /l/. As the disturbing factor we consider impacts which arise 
with the relative motion of rough surfaces and which lead to displacements, 
normal to the plane of frictional contact /2/. We demand of the true 
solution that it depend continuously on a small parameter, definingthe 
size of these disturbances. 

Painleve's principle /3/ is usually employed to select the true 
solution from all possible solutions: "two rigid bodies, which under 
given conditions would not produce any pressure on one another, if they 
were ideally smooth, would likewise not act on one another if they were 
rought." This a priori principle has so far not obtained experimental 
confirmation, and its validity is uncertain. Moreover, the solution 
obtained using Painleve's princi_ple does not have the property of con- 
tinuous dependence on the initial conditions /4/. 

Our present approach leads to one way of resolving the situation 
whereby the basic problem of dynamics ceases to be correct in cases 
where the motion does not exist or is not unique in the given initial 
conditions: in either case we use the hypothesis that the impact is 
tangential /3, 5/. The resulting solution then differs from that obtained 
by Painleve's principle. 

Consider a mechanical system with configuration space qE R" 11 {q,> 0); the equation 

QI = 8 corresponds to frictional contact. When there are no impacts about the one-sided 
constraint (I~> 0 the motion can be described by Lagrange's equations 

d dT -- 
dl aq‘ -+QCR, q,R=O, Q,REH” (I) 

where T is the kinetic energy of the system, Q = Q (q, q’, t) is the generalized force, and 
R is the reaction of the constraint. Solving (1) for the generalized accelerations, we 
obtain 

q”=A +BR, A=A(q,q’,t)ER”, R=B(q,t):ERn’, 

.&I>0 

(2) 

where A and B will be assumed to be continuous functions of their arguments. 
With 'I1 = ql. = 0 the reaction R satisfies the relations /6/ 

R, > 0, q,” > 0, q,” R = 0 (3) 

the last of which expresses the passive nature of the reaction: its action cannot lead to 
weakening of the constraint. With impacts, the motion is described by the system /7/ 

l&.+-At 
q.(to~l-~~)-q’(to)=BN, N= 5 R(t)&, O<;&<T 

t. 
w 

where &is the time when impact starts, r<‘i is the duration of the impact, and N is the 
impact momentum. 

We shall assume that the friction satisfies the Coulomb-Amonton law and that the connection 
between the reaction components is 

R, = f$l, fj = fj (9, 9’) (i = 2,. * *y n) (5) 

where the dependence of fj on q’ is realized by means of the vector v = ~(9.9’) of the 
relative velocity between the rigid bodies at their point of contact. On substituting (5) 
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into (21 and into 14), we can write the equations of motion of systems with friction in the 
absence and in the presence of impact as 

If there Were na friction with qr -0, fi=o, then B,'-$&,>a and, by (3f, R, would 
be given by 

N, == mar $& - AJB,'] (8) 

With & =I t, (4) would take the form 

&?,' = g,'@a -t- r) - Qr' &?t = B,' JV, = - (1 -t- ?t) g~.~~~~ 60 

where x is the coefficient of restoration of the relative velocity on impact, O<X($. Eq, (9) 
is attained for a value of the impact pulse N, = -(I -j-~fq~‘ (to) (31’)-1; since B,'>0 and 
$'t' (&f < tt, then ?\', > 0. Notice that N,+O as 4; (to) -+ "- 0. 

@en fricticm is present, the coefficient B,' CM take zero or negative values, i.e., it 
may be impossible to find the reaction by means of (S), (9) t and paradoxical situations arise 
in which the solution of the fu~~~rnen~a~ problem of dynamics does no t exist or is not unique. 
For instance, if &'~<@,13,<0, then Eq.(81 has no solution which satisfies conditions (3). 
In this case the hypothesis of tangential impact /3, 5/ is made; the motion is described in 
a small time interval by Eq.(7). As g' varies during the impact, 3,' becomes positive, with 
the result that indeterminacy of the mation is eliminated. 

Notice that only the plane-parallel motion of rigid bodies was consiLdered in /3, 51, and 
the effect of tangential impact was invariably connected with stoppage of the relative slipping. 
In general, no such stoppage occurs, as can be shownbyusing, following f8/, the interpretation 
of impact by means of a curve in the 5 = XiZ, 7% = YiZ, plane, where Z and X, 2' are the normal 
and tangential components of the reaction. If the velocity of relative sliding v is non-zero, 
then the mapping point M moves over the circle 5" +~'---- y" (p is the coefficiene of sliding 
frictioni in a directian which depends on the position of M relative to the hyperbola, at 
whose points v remains fixed. Corresponding to tangential impact we have a position of point 
Pf and of the origin 0 on different sides of the line I& zz 0. During the impact the point 
M may pass into the domain H,'>U, without descending fromthecircle, if its trajectory does 
not then cut the hyperbola. The impact is then not accompanied by vanishing of the vector \'. 
Notice that, with tangential impact, iVl /*# as i!i ft,)-+ -0. 

In tie case when A, =-= 8,' -= 0 any value of RI 30 is admissible, while if A, >O,U,"< 

0, condititions (3) are satisfied, not only by the value R, = Q at which constraint 

% > 0 is weakened, but also by one or even two values Iz,>O, corresponding to cases of 
sliding or oscillation /4/. The above-mentioned Painlevo's principle can be stated mathe- 
matically as 

A,>O=+R,=O W) 

Accordinq to (10) x the motion for which contact between the bodies ceases is regarded as 
true, 

Let us study the influence on the motion with 4% -0 of collisions which are due to points 
of the body surfaces coming into contact with an initial velocity ql'(tG) = -E<O as a result 
of the micro-relief of the surfaces. Such a collision will be described by (7). Denote by 

4 (6 &I the solution of system (I) with initial conditions p fta, sf = $$ q* (t*, E) = f---F, $Q-** f I *, 

q”$ and consMer the behaviour of this solution as E4 10, 

In the case N,’ fC} > 0, where CE & w'I C = (q”,q’(C,, E), to), the quantity iv, vanishes in 
accordance with (9) along with ri and #C, -'Cl/ = 0 (e), where Ce = f$'T 4' fgo$ 8) -I- Aq’, f,f, Aq’ 1s 
the change of the velacity vector an impact at the instant &,. Bence C is the same as C, = 

lhn,,., C,. 
in the present case system (1) has a unique solution with e =I& since the reaction is 

uniquely defined by (81, (51. With A, [C)>OO, for values of t: sufficiently close to t,, in 
(l), R-0 for q&s) both for .s = i? and for sufficiently small a >O (the constraint 
weakens, S& >O). Hence, for d>f,, we have the estimate 

In Clli, g‘ is taken equal to the half-sum of its one-sided limits at points where it is 
discontinuaus, 

of A, (Cl (. 0, we have qr s 0 for the trajectory q (E, O), while the trajectory q ft, E) is 

of a vibratory-impact type, h7e cOllStruCt a neighbourhcod a& of the point C in such a way that, 
for C'EL36f we have 
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t, < t < to + 6, II A (C’) - A (C) II < 6, II 3’ (C’) - B’ (‘3 II < 6 (12) 

At points of the integral curve passing through C,, inside domain Db for sufficiently 
small 6> 0 we have 

&' = 0 (s), Q1 = 0 (a? 03) 

For, in the interval between impacts 1 ql” -A,(C)/ <6, so that, during this interval, 
the velocity modulus /ql’ 1 increases by a factor not exceeding l(A, (et - 6)I(A, (C) + @I”~ , 
while on impact it is multiplied by an amount x<l, whence follows the first of Eqs.(13); q1 
then has order Q'~. 

We integrate (6) along the trajectory q(t,e) in the interval (to,t*), t* <to -I- 6: 

i* t* 
q’ (t*) - q’ (to) = s (A + RIB’) dt = 

to 
S(A-~B’)df+T~y~..dt=Il+h 
1s to 

(14) 

The term Ir in (14) has the same form for &=O and s > 0; for c-=0, 1, vanishes, 
while for s>O it is a discontinuous function of t*,which, by (131, has the estimate 

jI 1% 11 <%(t*), Cpe E Cl[to, to + 61, (Pe(to)=O, 'p; ;a 0. 'Pe@o + @-O(s). (IS) 

Since the solution of the equation 

t 
u(t)=Sau(s)ds+cp,(t), u(O)=0 

t. 

has the form 

I 

u(t)= e'L* Seaafp,*(s)ds=O(e) 
1. 

then, following /9/, we can show that inequality (11) holds in the domain Db, where Ay'= 0. 
we will now consider the singular case B,‘(C)< 0. By (7), collision with initial 

condition Y,' (Q = -a<0 can end only at a point Ce such that B,‘(C,)>O. Hence, apart from 
the dependence on A,(C), the impact is accompanied by a variation of q’ which is finite as 
e+ +O, i.e., is tangential. The limiting motion as &-++O is also accompanied by a jump 
in the phase trajectory from point Ctopoint C,. Consequently, if we start from the condition, 
when choosing the true motion of the system, that it be continuous with respect to the 
parameter E, then the motion is accompanied by tangential impact, apart fromthe dependence on 

A, (0 The situations whereby the solution of the basic problem of dynamics does not exist 

(A, (C) < 0) and is not unqiue (A,(C)> 0) are then identified, since the system behaviour 
after impact is defined by A,(Cd)#AI(C). 

At the end of the impact B,' (Co)> 0 and the motion has the same type as in the non- 
singular case, and in particular, (11) is satisfied, where Aq'+O. Notice that, by what has 
been said, this motion cannot be the same as one of the possible motions, constructed from 
values B%’ (C), A, (Ct. 

Finally, the case B,‘(C) = 0 in the above geometric interpretation of impact corresponds 
in the case when vf0 to the initial position of the point M at the intersection of the 
straight line 3,' = 0 with the circle of friction. Depending on the disposition of the hyper- 
bola, the point 14 is displaced either into the domain B,'>O, and then CD = C, or else into 
the domain B,‘<O, and CO#C. Each of these cases is considered above. 

Our results can be combined into the following theorem. 

Theorem. Eq.(l), describing the motion of a system of rigid bodies in the presence of 
friction obeying the Coulomb-Amonton law, has a unique solution q (t, 0) E C, (tO, tl), which 
satisfies the initial conditions q(t,,O) = q”,qv(t,, 0) = q’“, q,’ = y,‘O= 0, and has the property 
of continuous dependence in the sense of (11) on the small parameter a, characterizing the 
collisions arising with friction. In the case when B,'< 0, the generalized velocity q'(t,,, 0) 
with t = t, can have a jump-type discontinuity, which is connected with an effect of tangential 
impact. 
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THE HAMILTON-JACOBI EQUATIONS 
REDUCIBLE TO CANONICAL FORM* 

A.A. BEKOV 

Novel integrable cases of the Hamilton-Jacobi (HJ) equations are obtained. 
A method of reducing a class of non-autonomous dynamic systems to 
canonical form is given, and cases of their integrability are indicated. 
Comparison theorems art? presented enabling the integrability of a dynamic 
system to be determined by observing the form of its Hamiltonian. The 
case of two bodies of variable mass in a resisting and gravitating medium 
are studied as an example. 

1. The integration of canonical equations of motion is reduced to finding the complete 
integral of the corresponding HJ equation. The most interesting cases from the point of view 
of practical applications arethecasesofintegrabilityofth@HJ,LiouvilleandSr;ickel equations 
/l/ and their generalizations /2/. We shall establish new cases of integrability of the HJ 
equation of the form 

which generalize the result obtained by Yarov-Yarovoi /2/ and include the cases of integrability 
of Demin /3/, Liouville and Stackel /l./. 

Theorem 1.1. If the Hamiltonian is given bythe formula 

‘Ji = pi’ - cjy (j = 4, 2, . * ., k g a) 0.4) 

where ai,bi, Ui,@,,cPij are arbitrary continuous functions and aj#O, 690 and Gzl, are 
differentiable functions of the variables Qt, yI Crj,Cpl are continuous functions of time and cj 

are arbitrary constants, then the HJ equation has a complete integral 
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